a o S rra L o a Co ta, at, o tco a ot: R t fro ar-aff ct a o t a t

MANASI SHARMA, SHOSHANNA L. FINE, ROBERT T. BRENNAN,

bt to at x o t (b ta , at of at t(), ot / jt o o t t at) a to o to . W for co t t a ocat t o t t at a o att a o tt a at t to b, a or at T 3, a^h to ^h o c of bt at of at t() t t at at t to o to to abo^h. A toac, co a a ocat t, t t T 3 b, a or, t a a o a c co^h a a ocat t o t at a t t o to abo^h. A toac, co a a ocat t, t t T 3 ^h ta ^h, t a a t t a to to ot factor for a a t / to oca b, a or . A o a c co^h a b a to ^h ta ^h, t a a t t to ot factor for a a t / to oca b, a or at f t to cato for a t t a t t to for ot t to for ot t t at a t t to for ot t t to to for t t t to for ot t t t to for t t t to for t t t to for t t to for t to for t to for t t t to for t to for t to for t t t to for t t t to for t to f

C arra a t, W t Afr ca co tr of S rra L o for 11 ar b t f991 a 2002, t, a t at 48,000 U t^h Frot (McKa & Ma ra a, 2004).^h Ma of t ot, r ot oct at tot, f, t for r, a r or r a t r r r c of art r at h or txtr à a act, c , ca ab , x -a ab , a tort r (B ta co rt, Br a , R b - S t_e) ca ab , x -**Pet** a fc, & G a, 2010). Yo t, f force to $\int f^{k}$ or f to o, ab f, a h f t at fa, a oa ot, f at f, a t t rolo a rolo h c. t, at of c, t a a o c t o tco f ct t-, at of c, t a a o c t o tco f ct t-t , c , rat of t o, ax t, a o t-tra at c tr t acto (B ta co rt, A -B a, G a, , 2010; B to co t B r a t a... 2010; W a , & E , 2010; B ta co rt, Br a , t a ., 2010;

W a , & E , 2010, B ta co it, B a , t a , 2010, D t , M , & Bro a t, 2009; T, t at ff ct of x o t to a t ta a, a a ro-fo^h act o t, for ato of t, t tt ^htr ct t, a a t co c, a , t o a^ht c, a ract t tc , a oc as ato roc ^h(S, a , 2003). T, ^h o ta -c, o at, o o fra or ^h t arc, ^h t to o b o ^h t o a t arc, ^h t to o b o ^h t o a t arc, ^h t to o b o to o , a xa t ro of at a o rat^h c, a t at f ctt a c a f c roca t f a b t ^h t o t a t r^{h} t fac t o tco f ct ro -t (C cc, tt, 2006; C cc, tt & Co, , 1995; C & Va t o, 2015; Ma t & Nara a , 2012).

Conceptualizing Resilience: A Process-Oriented Approach

I tat t_e tro ta, at, ff ct of arxr c, t^{h} t f ar t^{h} r ar t crtca ro of rot ct factor, c co, oca CC . . $(\mathbf{D} | 1$

cotxt. It a tfact to o cot to cotxt a factor a to that for the form of the fo

Theoretical Perspectives on Stress and Coping

A a of co trat , a b tr ta -

to b t as x of a of the tail at x of the tail at x of the tail at x other tails ^hot, cotxt, a, ot, at a oat co afta at^ht, ^ha oc at obt cat trat t co tro ab tr or a b t ta, at o tco, c, a r to o o b (Ma, O troff, W, Gra a, & Fox, 2005; Ra b r t a., 2005; Ta or & Sta to , 2007). Proc -or t r arc, x or at co c, a ca r a x a^{h} ator attr of o a a t a^{h} a a a t r-o to artra a o a a f t ot or t (C cc, tt, 2006; C cc, tt & Co, , 1995). \vec{D} o (2010) \vec{n} - t, t^{n} t, t^{n} at-aff ct c, -t S traL o a fo t t, t, o $c\vec{n}$ t o r or tretr, co^hc a ta ct corofarx rc, a rara coct corror arx r c, a rara co-t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , a ra ra co -t r t a . T, a t or , o t r o -t c, r a oc at -t r t a . T, t a ra co -t r t a co -t r t a . T ra co -t r t ra co -t r t a . T ra co -t r t ra t o -t r t r t \hat{a} (B ta co *r*t t a., 2008; UNICEF, 2007). To a *r* t, a, or roct ot a t of ar-aff ct Öt, SraLoba 2002, at aftrt, a_{ℓ} , a_{ℓ} , a a for T3, t, Har ar T. H. C, a Sc, oo of P b c H a t, a ro rotoco.

Measures

A c, a a t, a a tato of t, f batt f a $rotoco^{h}$ to f t, at t, f c t ra a t ca a rot f at (Ac, bac, h & R cor a, 2006; Ca o & A f a, 2008). T, h, o f h a f t ca f oca f or c t ra a at fro x t a f , t, ro , h h Mental health. Of t xa ta, at, o tco at T3, b t a o c ta, at, $a^{h} r^{h}$ at T1 a T2 a a tor r co tro $t_{c}^{h} r^{h} r^{2}$ o o . M ta, at, a r r a $t_{c}^{h} r^{n}$ a c o ttra at tr to , a a $t^{h} r^{h}$ co ca b, a or, t r as b, a or, a xt r as b, a^{h} or. T, Ox for M a r of P c, o oca A j t t a o

Table 4.	Correlation	among	main	study	variables

	1	2	3	4	5	6	7	8	9	10	11
Dora, carab											
1. A at ^a Wa 3	1.00										
2. G <i>t</i>	11	1.00									
Tra at c ar x r c											
3. K / j r o o r t, ar 4. Ra / x a a a t r t, ar 5. D at, of ar t() r t, ar^{th} Co o h	.09	09	1.00								
3. K / jr o o r t, ar 4. Ra / x a a a t r ^t t, ar	.03	.45	.14	1.00							
5. Dat of art() rt, ar ^h	03	.45 .06	.05	.10	1.00						
Co ^h o ^h											
6. A roac, co	.11	12	02	01	.01	1.00					
7. A o a c ^a co	.06	09	09	10	14	22	1.00				
Wa 3 ta, at, 8. I t z as b, a or 9. Ext z as b, a or											
8.Itrans ^h b, ar or		.0001	.16	.04	.18	01	36	1.00			
9.Extrans b ^h ta or	01	07	.21	04	.01	10	03	.40	1.00		
10. A at / ro oc'à b, a or	.15	22	08	11	.007	.34	15	.07	09	1.00	
10. A a t / ro oc a b, a or 11. Po ttra at c tr ^h to	01	.03		.07	.18		41	.61	.25	.01	1.00

1.61, p = .04), a at a , tT3 tt as b -, a or (b = 1.30, p = .08).

Gender, age, and mental health. T, ff ct of f a a f tat t ca f ca t o h for a a t / ro oc a b, a or at T3. Ma f ort , f T3 a a t / ro oc a b, a or co ar to f a (b = 2.07, p = .03). R ar h a ff ct, f a to a ar a bj ct' a a f ca t a oc at t, cr a T3 a a t / ro oc a b, a or (b = 0.28, p = .006). b, a or (b = 0.73, p < .001). It a a o a oc at t, ar a o r T3 x t r as b, a or (b = 0.20, p = .020, p = .06), a t r as b, a or (b = 0.20, p = .08). A o a c co a f cat a oc at t, o r T3 t r as b, a or (b = 1.47, p < .001), o r T3 a a t / ro oc a b, a or (b = 0.75, p = .005), a o r o tra at c tr to (b = 2.01, p < .001).

Mediation through approach and avoidance coping

Coping and mental health. A roac, co a tat t ca T, r t of t, at o a a for a at, a t t f cat a oc at t, r, T a a a t / ro oc a ar r t Tab 6. W, t t , t, t, r a roac, h h h h h

 Table 5. Estimated regression models predicting Wave 3 mental health outcomes from baseline war exposures, gender, age, and coping with autoregressive controls

	Itzaks B,aoz	Extrans B, a or	A a t /Pro oc a B, a or	Po tt <i>r</i> a at c St <i>r</i> S to	
	b (SE)	b (SE)	b (SE)	b (SE)	
K or o o o r t, ar	1.41* (0.69)	1.60** (0.53)	-1.45 (0.78)	3.17*** (0.82)	
Wara or x a a a t r ⁿ t, ar	-0.72(1.06)	-0.51(0.74)	-0.24(1.03)	-0.36 (1.16)	
Par $t()$ r $t_{x_{i}}$ ar n	1.30 (0.73)	0.13 (0.54)	0.86 (0.71)	1.61* (0.75)	
F a ^K	-1.05(0.89)	-0.45(0.64)	-2.07*(0.87)	0.02 (0.90)	
A at T 3	-0.11(0.09)	0.01 (0.07)	0.28** (0.10)	-0.03(0.10)	
Itraks bea or at T 1	0.10 (0.06)	0.03 (0.03)	0.05 (0.06)	0.08 (0.06)	
Extrans b ^h a orat T 1	-0.02(0.09)	0.09 (0.06)	-0.13(0.10)	-0.01(0.10)	
Extrans b ^h aoratT 2	0.00(0.09)	0.07 (0.06)	0.04 (0.09)	0.02 (0.10)	
Aat / rooc ^a b, a or at T 1	-0.09(0.05)	0.07 (0.04)	0.08 (0.06)	0.02 (0.06)	
A a t / zo oc a b ^{, h} a oz at T 2	0.05 (0.05)	-0.04(0.03)	$0.11^{*}(0.05)$	-0.02(0.06)	
Po ttra at c tr h to at T 2	-0.07(0.89)	-0.01(0.04)	0.07 (0.06)	-0.10(0.08)	
A roac, co	-0.20 (0.11)	-0.20 (0.10)	0.73*** (0.13)	-0.05(0.14)	
A o a c co	-1.47^{***} (0.23)	-0.12(0.18)	-0.75** (0.26)	-2.01*** (0.25)	

Note: Co ff c t b, t, t at $t \neq 0$ co ff c t for t, a oc at $t \neq 0$ co ff c t, a oc at $t \neq 0$ co ff c t. $p \leq .1. * p \leq .05. * * p \leq .001.$

orao a c co r r ct b t, ar x o r, o a o a c co a tat t ca f ca t r ct b at, of a at t t $t_{r_{1}}$ at (b = 0.36, p = .035). A at of a at t f t, at (b = 0.36, p = .035). A -roac, co a of f^h ct b a of t, t, f tox c tf x o^h f. N ft, , t t at o^h t, ro, a roac, a a o a c co^h for ac, x o f o^h too h a f, bot, t, Sob t t a t,^h ara t t to o trat f ct ff ct. W fo t, at t, co ff c t for t, a oc a-to b t, co ff c t for t, a c a $\begin{array}{rcl} f & ct & ff & ct & w & fo & t, at t, & co & ff & c & t & for t, & a & oc & a \\ to & b t & ar & t() & at, & h & t, & ara & T3^{h} & t & fa & - \\ b & a & or & a & r & c & b^{h} & 26.14\%, & a & oa & a & co & o \\ a & a^{h} & tot, & o & (Sob & = 1.94, p^{h} = .05). T, & co & b & \\ & a & f^{h} & at & oa & t, & r & ct & at, & a & b^{h} t & ar \\ t() & at, & a & T3 & t & r & as^{h} & b & , a & or & oo & r & ta \\ t & tca & f & ca & tat t2(.8(a)15.8(6 - 1 (/F5 6 Tf11.205 68 TD0 Tc(b)a)/F1 1 Tf0.95846 TD0 T158 c(t - 5(a) .8(2)-22842(a))TJ/F \\ \end{array}$

a c; (b) t ℓ ato b t cfc arx o ℓ atba ($or^{2} j \ell$ ot ℓ , b ra or x a a a t , a at of ar t()) a b t ta, at o tco at T3 (ht ℓ ab, a or), co tco for ℓ or of to a ta, hat, cator; a (c) t, at ro of a coa, a a a a co t co for ℓ or of to a ta, hat, cator; a (c) t, at ro of a coa, a a a b a c co t x ha t r ato (F ℓ 1). Eco o ca t t or, a, torca root t a a a of, o c, ℓ a a o t, co of co t f factor, c, a a ℓ co h, t t broa ℓ oca coo ca t a a a o f ℓ ta h ℓ c a o c, ℓ (L t, ar & Bor, 2007; Mat, 2006; U ar, G, h o r, & R c, t r, 2013). T, co c t of co 4(ℓ)-1 fo(a)12.9()TJ-1275062-1.2019 TD(b)12.4()0()12.2()-621.7(())13.5(ℓ o a a or, 0 (b) ta r, 2007; Mat, 2006; U ar, G, h o r, & R c, t r, 2013). T, co c t of co 4(ℓ)-1 fo(a)12.9()TJ-1275062 -1.2019 TD(b)12.4()0()12.2()-621.7(())13.5(ℓ o to f1474(0)0(c)f12.9()12.4 co , ' co 01()-317.2(a)0()-1 f()-26740(a) 12.9 frac, h o a ra or 0 (b) f347(a) 00(c)f12.9()11.8 co ra t or ca (a) 1850 a of Fab 14.9(b) 14.6(19.32.9(c) 12.2()11.8 co ra t, or ca (a) 1850 a of Fab 14.9(b) 14.6(19.32.9(c) 12.2()11.8 co ra t, or ca (a) 1850 a of Fab 14.9(b) 14.6(19.32.9(c) 11.8(r) or ra ca (b) fab (19.32.9(c) 12.2()11.8 co ra t, or ca (c) fab 14.9(c) 12.9()12.2()12.4()12.9()12.2()10-1.1962 TD()29.5(o)12.4()16, h) -26740(a) 12.9()12.2()10-1.1962 TD()29.5(o)12.4()16, h) -26740(a) -2013()10-1.1962 TD()29.5(o)12.4()16, h) -26740(a) -2014()2014(20, 10, 10, 10) -2014(a) -2014(a)

t, t, t, t ac at for
$$acc, o$$
 t, to of
t o^h, a^h ta, at, S $acc o^h$.

Study strengths and limitations

References

Go -Mor, M. C., Ta or, L. K., M rr, C. E., S, ro, P., & C -, E. M. (2014). A o c t'r ato, t, Go a trak -a j t to rt : T, o rat roh of atrar o co -. Journal of Family Psychology, 28, 749 758.
Ha o, D. R., & Gott a, I. I. (2012). B oo ca fa or r ct o Gark a r c. Development and Psychopathology, 24, 363 369.
Harro, E., A, S., E ott, E., & W a, G. (2006). Resilience, coping